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Introduction 
 
After a long career in high tech as a software engineer, I spent the last several years teaching 
computer programming to high school students in San Jose, California. In that class, we used 
algebra and geometry every single day. I don't know how to do any kind of user interface 
programming without mathematics. The programmer must precisely place objects on the 
screen, create icons and logos, even come up with color combinations using hexadecimal math.  
 
When I was in high school, math was my strongest subject. But when I got to university, things 
didn't work out so well in the more advanced calculus courses. I still had to use trigonometry 
and even basic calculus in my career as a software engineer, but nothing beyond that.  
 
I am fortunate that my computer science courses included digital logic, combinatorics, graph 
theory, and applied algebra, which prepared me for this course to some degree. 
 
One reason I chose to pursue this study of mathematics is because of my experience with high 
school students. During my years at that job, I honestly don't think I did a good job of 
communicating mathematics to the students. Communicating even elementary math ideas to 
younger people takes a lot of preparation and the lessons must be meticulously designed. It is 
possible for a teacher to understand math too well, which actually makes it harder to 
communicate the basic concepts, because they come so easily to the more experienced 
teacher. This makes it tempting to gloss over small points that are critical to a learner. So, an 
important part of what I'm learning in this class is how to effectively communicate mathematics 
to students who want to learn. Participation in the small groups is an important part of this 
process.  
 
I am currently teaching computer science in the community college setting. I hope to put to use 
what I've learned in this course about communication and group work. 
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1. Direct Proof 
 

 
A direct proof of a proposition is a demonstration that the conclusion of the proposition follows 
logically from the hypothesis. We use definitions, previously proven propositions, and 
mathematical properties to justify each step in the proof. 
 

Proposition: If x is an even integer and y is an odd integer, then xy is an even integer. 
 
Some propositions, like this one, seem obvious at first, because we feel almost instinctively that 
the product of any even integer and any other integer must be an even integer. But, to prove it 
rigorously, we must pay attention to the definitions and make sure we don't skip a step. The 
temptation might be to skip something we think is trivial. In a more complicated proof, this 
might end up with errors. The challenge for me is to make sure I stay on track and make no 
assumptions. 
 

Proof. Assume we have an even integer x	and an odd integer	y.	We will prove that	xy	is then 
an even integer. 

If	x	is an even integer, then, by definition, there exists an integer	k	such that	x	=	2k.	If	y	is an 
odd integer, then, by definition, there exists an integer	q	such that	y	=	2q	+	1.	

Then, by algebra and substitution,	
𝑥𝑦 = 	 (2𝑘)(2𝑞 + 1) 

	= 	4𝑘𝑞	 + 	2𝑘	
	= 	2(2𝑘𝑞	 + 	𝑘) 

So,	xy	=	2r	for some integer	r	=	2kq	+	k.	We know	2kq	+	k	is an integer, because the 
integers are closed under multiplication and addition. So, by definition,	xy	is an even	
integer. We have proven that if	x	is an even integer and	y	is an odd integer, then	xy	is an 
even integer.	🐾	
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2. Proof using Contrapositive 
 

 
The contrapositive of a conditional statement P à Q is the conditional statement ¬Q à ¬P.  
 
P à Q means "P implies Q" or "If P, then Q." 
¬Q à ¬P means "Not Q implies Not P" or "If not Q, then not P." 
 
Sometimes we find it easier to prove the contrapositive statement than to prove the original 
conditional statement. If we can prove either statement, this also proves the other. That is, if 
we can prove the original statement, this also proves the contrapositive. If we can prove the 
contrapositive, this also proves the original statement. 
 

Proposition. For all integers a and b, if ab is even, then a is even or b is even.  

I chose this proof because it is a counterpart to the direct proof on the previous page. For me, 
the challenge with contrapositive is that it is not that intuitive to me. Logic dictates that it 
works, but sometimes I still have to convince myself. This simple example is not that 
challenging, which makes it a good introduction to contrapositive. 

Proof. We will approach this by contrapositive: If a is odd and b is odd, then ab is odd. 
Assume we have odd integers a and b. Since a is odd, there exists an integer k such that  
a = 2k	+ 1. Since b is odd, there exists an integer q such that b = 2q	+ 1. By algebra and 
substitution, 

𝑎𝑏 = (2𝑘 + 1)(2𝑞 + 1) 
= 4𝑘𝑞 + 2𝑘 + 2𝑞 + 1 

= 2(2𝑘𝑞 + 𝑘 + 𝑞) + 1 

= 2𝑟 + 1 

for some integer r. We know r is an integer because the integers are closed under addition 
and multiplication. So 2r	+ 1 is odd by definition, hence ab is also an odd integer. We have 
shown that if a and b are odd integers, then ab is an odd integer. By contrapositive, we 
conclude that if ab is even, then either a is even or b is even (or both). 🐾 

 

 
  



 6 

 

3. Proof Using Contradiction 
 

 
A contradiction is a compound statement that is false for all possible combinations of truth 
values of the individual statements. If we can start with a statement P and from it, prove 
something we know to be false, then we have a contradiction. We might even be able to prove 
a statement to be both true and false, which is a contradiction. 
 

Proposition. For each positive real number r, if r2 = 18, then r is irrational.  
 
This proof proceeds by contradiction. The proof relies on some lemmas we proved in class. One 
reason I like this proof a lot is just because I was never before exposed to a proof that a number 
is irrational, so this is something new to me. I also like fractions, and proofs of rationality and 
irrationality seem to be full of fractions. 
 

This proof will rely on the following Lemmas, which we proved previously in class. 
 
Lemma 1. If m is an integer, then m/1 is rational. 
 
Lemma 2. Any rational number can be expressed in least terms m/n where n	≠ 0 and m and n 
have no common factors greater than 1. 
 
Lemma 3. If n is an integer, if n2 is even, then n is even. 
 
Proof. We will show that if r is a real number and r2 = 18, then r is irrational. We will proceed 
by contradiction. Assume r is a positive real number, r2 = 18 and r is rational. By definition,  
𝑟 = 𝑚/𝑛   for some integers m and n, and m and n do not share factors greater than 1, and  
n ≠ 0. By substitution and algebra,  

𝑟 =
𝑚
𝑛  

 

18 = E
𝑚
𝑛F

G
 

 

18 =
𝑚G

𝑛G  
 

𝑚G = 18𝑛G 
 

𝑚G = 2(9𝑛G) 
 

Continued on next page à 
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We know m2 is an even integer. By Lemma 3, m is an even integer. By definition, there exists 
an integer k such that 𝑚 = 2𝑘. So 

𝑚G = (2𝑘)G = 2(9𝑛G) 

𝑚G =	 (2𝑘)(2𝑘) = 2(9𝑛G) 

𝑚G = 2(2𝑘G) = 2(9𝑛G) 

So now we know that 2𝑘G = (3𝑛)G. By definition, (3𝑛)G is an even number. By Lemma 3, we 
see that 3n is an even number. So we know that n is an even number. So m is even and n is 
even. This is a contradiction because by Lemma 2, m and n have no common factors greater 
than 1. ↮		
	
Thus our original assumption must have been false. So if a real number r2 = 18, then r is 
irrational. 🐾 
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4. Proof of If and Only If Statement 
 

 
To prove an "if and only if" statement, we need to prove both directions. That is, in order to 
prove "P if and only if Q," we need to prove both "If P, then Q" and also "If Q, then P." In other 
words, P à Q and Q à P. 
 

Proposition. For integers k, 4 divides k2 if and only if k is even.  

 
This is an interesting proof because not only do we have to prove both directions, but in one 
direction, we proceed by contradiction. In the other direction, we use a direct proof. When 
constructing the proof of an "if and only if" statement, we do not have to use the same strategy 
for both directions. We can use whatever strategy works best in each case, and this may be two 
different strategies. 
 

Proof. To demonstrate that 4 divides k2 if and only if k is even, we will show that if 4 divides 
k2, then k is even. We will also show that if k is even, then 4 divides k2. 
 
Part 1. (→) We will show that for an integer k, if 4 divides k2, then k is even. We will 
demonstrate this by contradiction. Assume 4 divides k2 and k is odd. Since k is odd, there 
exists an integer q such that 𝑘 = 2𝑞 + 1. By substitution and algebra, 

𝑘G = (2𝑞 + 1)G 
= 4𝑞G + 4𝑞 + 1 
= 2(2𝑞G + 2𝑞) + 1 

 
which is an odd number by definition. We know that 2𝑞G + 2𝑞 is an integer, because the 
integers are closed under multiplication and addition. 
 
If 4 divides k2, then there exists a number r such that 4𝑟 = 𝑘G. By substitution and algebra, 

𝑘G = 4𝑟 
= 2(2𝑟) 

which is an even number by definition. So, we arrive at a contradiction, since k2 cannot be 
both an odd number and an even number. We conclude that if 4 divides k2, then k must be 
even. 

 
 
 

Continued on next page à 
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Part 2. (←) We will show that for an integer k, if k is even, then 4 divides k2. We assume k is 
even, therefore there exists an integer s such that k = 2s. By substitution and algebra,  

𝑘 = 2𝑠 
𝑘G = (2𝑠)G 

= 4𝑠G 
If 4 divides k2, then there exists an integer t such that 4𝑡 = 𝑘G. In this case,	𝑡 = 𝑠G. So, 4 
divides k2. This means that if k is even, then 4 divides k2. 
 
Conclusion. Since we have shown that if 4 divides k2, then k must be even, and if k is even, 
then 4 divides k2, we conclude that 4 divides k2 if and only if k is even. 🐾 
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5. Proof Using Induction 
 

 
Induction is a technique we use to prove statements about the natural numbers, 

𝑛 ∈ 1, 2, 3,… 
We cannot use direct proof to prove a proposition is true for every natural number 𝑛, because 
there are infinitely many of them. Instead, we use a recursive technique to demonstrate that 
the proposition is true for every 𝑛. We do this in two steps: 

1. Show that the statement is true for 𝑛 = 1. 
2. Show that if the statement is true for some natural number 𝑘, it is also true for 𝑘 + 1. 

The first step is called the basis step. The second step is called the inductive step. 
 

Proposition. For each natural number 𝑛, 3 divides (𝑛# − 𝑛).  
 
I chose this proof because it is one of the longer inductive proofs we have done. It was 
satisfying to work on. In the process of copying this from a previous assignment to here, I 
corrected a few typos and added some clarifying statements. It seems that no matter how 
much I pore over the text, there is always something to tweak. 
 

Proof. We proceed by the principle of mathematical induction. For each natural number 𝑛, 
we let 𝑃(𝑛) be the statement 

3 divides (𝑛# − 𝑛). 
 
Basis step. We first prove that 𝑃(1) is true. Let 𝑛 = 1.  

𝑛# − 𝑛 = 1# − 1 = 1 − 1 = 0.  
3 divides 0, so 𝑃(1) is true. 
 
Inductive step. We will prove that for each natural number 𝑘, if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) 
is true. We assume that 𝑃(𝑘) is true, that is,  

3 divides (𝑘# − 𝑘). 
 
The goal now is to prove that 𝑃(𝑘 + 1) is true. So we will prove that  

3 divides (𝑘 + 1)# − (𝑘 + 1). 
 

 

 
 

 
Continued on next page à 
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By algebra, we see that 
(𝑘 + 1)# − (𝑘 + 1) = 𝑘# + 3𝑘G + 3𝑘 + 1 − (𝑘 + 1) 

= 𝑘# + 3𝑘G + 2𝑘 
= 𝑘(𝑘 + 1)(𝑘 + 2) 
= 𝑘(𝑘 + 1)(𝑘 − 1 + 3) 
= 𝑘(𝑘 + 1)(𝑘 − 1) + 3𝑘(𝑘 + 1) 
= (𝑘# − 𝑘) + 3𝑘(𝑘 + 1) 

 
We know that 3 divides 𝑘# − 𝑘 because that is our initial assumption. So we can rewrite the 
previous equation as follows: 

(𝑘 + 1)# − (𝑘 + 1) = 3𝑞 + 3𝑟 
 
where 𝑞 = 𝑘# − 𝑘 and 𝑟 = 𝑘(𝑘 + 1). We know 𝑞 is an integer by the definition of divides. 
We know 𝑟 is an integer because the integers are closed under multiplication and addition. 
By distribution, we see that  

(𝑘 + 1)# − (𝑘 + 1) = 3(𝑞 + 𝑟) 
= 3𝑠 

 
Where 𝑠 = 𝑞 + 𝑟. We know that 𝑠 is an integer because the integers are closed under 
addition. So we know that 3 divides (𝑘 + 1)# − (𝑘 + 1) by the definition of divides. So we 
have shown that if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is true. By the principle of mathematical 
induction, we conclude that for each natural number 𝑛, 3 divides (𝑛# − 𝑛). 🐾 
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6. Proof that Two Sets Are Equal 
 

 
This is a perhaps somewhat longer proof that two sets are equal. In order to prove set equality, 
we show that each set is a subset of the other set. There is another proof of set equality in 
Proof 11, a collaboration with other students in my group.  
 

Proposition.  
Let A, B, and C be subsets of some universal set U. Then, A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).  

 
This proof is not difficult. But like some other proofs involving sets, putting it together was a 
little tedious. The symbols for set notation are not easy to access. I found myself copying and 
pasting a lot. This introduced the possibility of copy and paste errors, especially substituting ∩ 
for ∪ and vice versa.  
 

Proof. In order to show set equality, we will prove that each set is a subset of the other set. 
 
 [⊆]  We will first prove that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). Let x be an element chosen 
arbitrarily from A ∩ (B ∪ C). By definition of set intersection, x ∈ A and also x ∈ B ∪ C. By 
definition of set union, since x ∈ B ∪ C, then x ∈ B or x ∈ C.  
 
In the first case, if x ∈ B and x ∈ A, then by definition of set intersection, x ∈ A ∩ B. In the 
second case, if x ∈ C and x ∈ A, then by definition of set intersection, x ∈ A ∩ C. 
 
So x ∈ A ∩ B or x ∈ A ∩ C. By definition of set union, x ∈ (A ∩ B) ∪ (A ∩ C). Since an element x 
chosen arbitrarily from A ∩ (B ∪ C) is also an element of (A ∩ B) ∪ (A ∩ C), by definition of 
subset, A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). 
 
[⊇]  We will now prove that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). Let x be an element chosen 
arbitrarily from (A ∩ B) ∪ (A ∩ C). By definition of set union, x ∈ A ∩ B or x ∈ A ∩ C. In the 
first case, by definition of set intersection, if x ∈ A ∩ B, then x ∈ A and x ∈ B. In the second 
case, if x ∈ A ∩ C, then x ∈ A and x ∈ C. In either case x ∈ A.  
 
If x ∈ A ∩ B, since we already know that x ∈ A, it must also be that x ∈ B. If x ∈ A ∩ C, since 
we know that x ∈ A, it must also be that x ∈ C. So x ∈ B or x ∈ C. By definition of set union, x 
∈ B ∪ C. Since we already know that x ∈ A, by definition of set intersection, x ∈ A ∩ (B ∪ C).  
 

Continued on next page à 
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Since an element x chosen arbitrarily from (A ∩ B) ∪ (A ∩ C) is also an element of A ∩ (B ∪ C), 
by definition of subset, (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). 
 
Since we have shown that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) and (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ 
C), we conclude that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 🐾 
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7. Proof that a Relation is an Equivalence Relation 
 

 
A relation is an equivalence relation if the relation is reflexive, symmetric, and transitive.  

• A relation R is reflexive on the set A if for every element 𝑥 ∈ 𝐴, (𝑥, 𝑥) 	∈ 𝑅. 
• A relation R is symmetric if for every 𝑥, 𝑦 ∈ 𝐴, if (𝑥, 𝑦) 	∈ 𝑅, then (𝑦, 𝑥) 	∈ 𝑅. 

• A relation R is transitive if for every 𝑥, 𝑦, 𝑧 ∈ 𝐴, if (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅, then 
(𝑥, 𝑧) ∈ 𝑅.  

 

Proposition. 
Consider the relation ∼ on the set of integers defined by:  
For 𝑎, 𝑏, integers, 𝑎	 ∼ 	𝑏 if and only if 2 divides (𝑎	 + 	𝑏).  
Prove that this relation is an equivalence relation.  

 
This is not a difficult proof. I like it because it clearly shows the reflexive, symmetric, and 
transitive properties in use. 
 

Proof. To show that this relation is an equivalence relation, we must show that the relation is 
reflexive, symmetric, and transitive. 
 
1. Reflexive.  
 

The relation R is reflexive on A if for each 𝑥 in A, 𝑥 R 𝑥, or (𝑥, 𝑥) is an element of A. 
 
Let 𝑥 be an element chosen arbitrarily from A. R is reflexive if (𝑥, 𝑥) is an element of A. 2 
divides (𝑥 + 𝑥). 𝑥 + 𝑥	 = 	2𝑥, and 2 divides 2𝑥 by definition of divides. By definition, R is 
reflexive. So we have shown that R is reflexive. 
 
2. Symmetric.  
 

Let 𝑥 and 𝑦 be two elements chosen arbitrarily from A. Assume 2 divides  
(𝑥 + 𝑦). 𝑥 + 𝑦 = 𝑦 + 𝑥 (by the symmetric property of addition). We know 2 divides (𝑦 + 𝑥) 
because 2 divides (𝑥 + 𝑦). So both (𝑥	~	𝑦) and (𝑦	~	𝑥) are in the relation. By definition, R is 
symmetric. So we have shown that R is symmetric. 
 
 

 
 
 

Continued next page à 
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3. Transitive.  
 

Let 𝑥, 𝑦, and 𝑧 be three elements chosen arbitrarily from A. Assume 2 divides  
(𝑥 + 𝑦) and 2 divides (𝑦 + 𝑧). By definition of divides, 𝑥 + 𝑦 = 2𝑞 where 𝑞 is an integer. 
Also by definition of divides, 𝑦 + 𝑧 = 2𝑟 where 𝑟 is an integer. Then by substitution and 
algebra, 
 

𝑥	 + 	𝑦	 + 	𝑦	 + 	𝑧 = 2𝑞 + 2𝑟	
𝑥 + 2𝑦 + 𝑧 = 2𝑞 + 2𝑟	

𝑥 + 𝑧 = 2𝑞	 + 2𝑟 − 2𝑦	
𝑥 + 𝑧 = 2(𝑞 + 𝑟 − 𝑦)	
𝑥 + 𝑧 = 2𝑠	

Where 𝑠 = 𝑞 + 𝑟 − 𝑦. We know 𝑠 is an integer because the integers are closed under 
addition and subtraction. So, we see 2 divides 𝑥 + 𝑧 by definition of divides. Since we know 2 
divides 𝑥 + 𝑦 and 2 divides 𝑦 + 𝑧, and we have shown that 2 divides 𝑥 + 𝑧, by definition, the 
relation R is transitive.  
	
Conclusion. Since we have shown that the relation R is reflexive, symmetric, and transitive, 
we conclude that R is an equivalence relation. 🐾 
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8. Proof that shows a function is injective 
 

 
A function 𝑓: 𝐴à	𝐵 from the set A to the set B is an injection (or is injective) if  

For all 𝑥, 𝑦 ∈ 𝐴, if 𝑥 ≠ 𝑦, then 𝑓(𝑥) ≠ 𝑓(𝑦). 
Another way to say this is that 𝑓 is one-to-one; each element 𝑓(𝑥) in B (called an image) has its 
own unique corresponding element 𝑥 in A (called a preimage).  
 

Proposition. Let A, B, and C, be nonempty sets and assume that 𝑓: A → B and 𝑔:B → C.  
If 𝑓 and 𝑔 are both injections, then (𝑔 ∘ 𝑓) ∶ A → C is an injection.  

 
This proof concerns the composition of functions. (𝑔 ∘ 𝑓) = 𝑔(𝑓(𝑥)). This is a concept that is 
familiar to programmers, especially those with a background in functional programming. We 
apply one function, then we apply the second function to the output of the first function. 
 

Proof. Assume we have nonempty sets A, B, and C, and 𝑓: A → B and 𝑔 ∶ B → C are both 
injections.  
 
By definition of injection, for all 𝑥, 𝑦 in A, if 𝑥 ≠ 𝑦, then 𝑓(𝑥) ≠ 𝑓(𝑦).  Let 𝑎 and 𝑏 be two 
elements chosen arbitrarily from A, and let 𝑎 ≠ 𝑏. Then 𝑓(𝑎) ≠ 𝑓(𝑏). Let 𝑐 = 𝑓(𝑎) and  
𝑑 = 𝑓(𝑏). 𝑐 and 𝑑 are elements of B. We know 𝑐 ≠ 𝑑 because 𝑓 is an injection. So 𝑐 and 𝑑 
are two different elements of B. 𝑐 and 𝑑 are not selected arbitrarily, but they are not equal.  
 
By definition of injection, for all 𝑥, 𝑦 in B, if 𝑥 ≠ 𝑦, then 𝑔(𝑥) ≠ 𝑔(𝑦). Since 𝑐 ≠ 𝑑, then  
𝑔(𝑐) ≠ 𝑔(𝑑). Let 𝑒 = 𝑔(𝑐) and 𝑓 = 𝑔(𝑑). 𝑒 and 𝑓 are elements of C. 𝑒 ≠ 𝑓. So 𝑒 and 𝑓 are 
two different elements of C.  
 
So we have 𝑎 and 𝑏, two elements of A, and 𝑎 ≠ 𝑏. By applying the two functions 𝑓 and 𝑔, 
we find 𝑒 and 𝑓, two elements of C, and 𝑒 ≠ 𝑓.  
 
So we have 𝑎 ≠ 𝑏, and (𝑔 ∘ 𝑓)(𝑎) ≠ (𝑔 ∘ 𝑓)(𝑏). So By definition of injection, the two 
functions applied together (𝑔 ∘ 𝑓) is an injection. 🐾 
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9. Proof that is beautiful, interesting, or elegant 
 

 
I have to be honest and say that I love the rational numbers and I love fractions. This proof 
makes use of fractions, not in a clever or even interesting way, but in a way that I think is 
beautiful and maybe elegant. There is a certain symmetry to the way the fractions resolve. 
 

Proposition. Consider the relation on the set of real numbers defined by: 𝑥 ∼ 𝑦 if there exists 
a nonzero rational number 𝑞 such that 𝑥 = 𝑞𝑦. This relation is an equivalence relation.  

 
This is a proof about an equivalence relation. We discussed equivalence relations in Proof #7 on 
page 13. 
 

Proof. To show that this relation is an equivalence relation, we must show that the relation is 
reflexive, symmetric, and transitive. 
 

Reflexive. The relation ~ is reflexive if for all 𝑥 in A, (𝑥, 𝑥) is in A. Let 𝑥 be an arbitrarily 
selected element of A. Then  

𝑥 = 𝑥	
𝑥 = 1 · 𝑥	
𝑥 = 𝑞 · 𝑥	

 

where 𝑞 = 1, a rational number. We have shown that the relation ~ is reflexive. 
 

Symmetric. The relation ~ is symmetric if for all 𝑥 in A, if 𝑥~𝑦, then 𝑦~𝑥. Let 𝑥 and 𝑦 be 
arbitrarily selected elements of A such that 𝑥	~	𝑦. Then 
 

𝑥 = 𝑞 · 𝑦	 by	proposition	
	

𝑥 = ]
^
· 𝑦	 by	def.	of	rational	number	

 

where 𝑎 and 𝑏 are integers and 𝑎 and 𝑏 are non-zero. 
 

^
]
· 𝑥 = ^

]
· ]
^
· 𝑦	 multiply	both	sides	by	^

]
	

	
^
]
· 𝑥 = 𝑦	 ^

]
· ]
^
= 1	

 

Therefore 𝑦	~	𝑥 by definition. We have shown that the relation ~ is symmetric. 
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Transitive. The relation ~ is transitive if for all 𝑥, 𝑦, and 𝑧 in A, if 𝑥	~	𝑦 and 𝑦	~	𝑧, then 𝑥	~	𝑧. 
Let 𝑥, 𝑦, and 𝑧 be arbitrarily selected elements of A such that 𝑥	~	𝑦 and 𝑦	~	𝑧. Then by 
definition of the relation, 

𝑥 = 𝑞 · 𝑦	and	𝑦 = 𝑟 · 𝑧	
	

where 𝑞 and 𝑟 are non-zero rational numbers. By definition of rational numbers,  
 

𝑥 = ]
^
· 𝑦	and	𝑦 = _

`
· 𝑧	

	
where 𝑎, 𝑏, 𝑐, and 𝑑 are non-zero integers. By substitution and algebra, 
 

𝑥 =
𝑎
𝑏 · 𝑦	

	

=
𝑎
𝑏 · (

𝑐
𝑑 · 𝑧)	

	

= E
𝑎
𝑏F E

𝑐
𝑑F 𝑧	

	

=
𝑎𝑐
𝑏𝑑 · 𝑧	

	

=
𝑒
𝑓 · 𝑧	

	
where 𝑒 = 𝑎𝑐 and 𝑓 = 𝑏𝑑. We know 𝑒 and 𝑓 are integers because the integers are closed 
under multiplication. We know 𝑒 and 𝑓 are non-zero because 𝑎, 𝑏, 𝑐, and 𝑑 are non-zero.  
 

𝑥 =
𝑒
𝑓 · 	𝑧	

	
= 𝑠 · 𝑧	

	
where 𝑠 = a

b
. We know 𝑠 is a rational number by definition, because 𝑒 and 𝑓 are non-zero 

integers. So we have shown that 𝑥	~	𝑧 by definition. So we have shown that the relation ~ is 
transitive. 
 
Conclusion. Since we have shown that the relation ~ is reflexive, symmetric, and transitive, 
we conclude that ~ is an equivalence relation. 🐾	
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10. Proof that I struggled with 
 

 

Proposition. There are no integers a and b such that 𝑏G = 4𝑎 + 2.  
 
This proof should probably proceed by contradiction. When I first wrote the proof, it seemed 
that two cases were necessary. The instructor pointed out that I had not completely covered 
the second of the two cases. I went back and split the second case into two sub-cases, which 
resulted in a correct but overly long proof. It turns out the two sub-cases were not really 
necessary, and the second case can proceed without sub-cases. This is a situation where I 
moved too quickly to fix an initial error without looking at the bigger picture.  
 

Proof. We will proceed by contradiction. We will look at two separate cases.  
 

• Case 1: 𝑏 is odd 
• Case 2: 𝑏 is even 

 
Case 1. 𝒃 is odd. Assume a and b are integers, 𝑏G = 4𝑎 + 2, and 𝑏 is odd. By definition of 
odd, 𝑏 = 2𝑘 + 1 for some integer 𝑘. By substitution and algebra, we have 

𝑏G = 4𝑎 + 2 
(2𝑘 + 1)G = 4𝑎 + 2 substitution 

4𝑘G + 2𝑘 + 1 = 4𝑎 + 2 expansion 
2(𝑘G + 𝑘) + 1 = 2(𝑎 + 1) factoring 

2𝑞 + 1 = 2𝑟 substitution 
 
for some integer 𝑞 and some integer 𝑟. The left-hand side is odd, by definition, and the right-
hand side is even, by definition. But an odd integer cannot equal an even integer, so we have 
a contradiction. So we conclude there are no such integers 𝑎 and 𝑏 that satisfy the equation 
if 𝑏 is odd. 
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Case 2. 𝒃 is even. Assume a and b are integers, 𝑏G = 4𝑎 + 2, and 𝑏 is even. By definition of 
even, 𝑏 = 2𝑘 for some integer 𝑘, and 𝑎 = 2𝑞 for some integer 𝑞. By substitution and 
algebra, we have 
 

𝑏G = 4𝑎 + 2 
 

(2𝑘)G = 4𝑎 + 2 substitution 
 

4𝑘G = 4𝑎 + 2 expansion 
  

2𝑘G = 2𝑎 + 1 divide both sides by 2 
 

2𝑠 = 2𝑎 + 1 substitution 
 
for some integer 𝑠 = 𝑘G. We know that 𝑠 is an integer because the integers are closed under 
multiplication. The left-hand side is even, by definition, and the right-hand side is odd, by 
definition. But an even integer cannot equal an odd integer, so we have a contradiction. So 
we conclude that there are no such integers 𝑎 and 𝑏 that satisfy the equation if 𝑏 is even.  
 
Conclusion. Since we have demonstrated that 𝑏G ≠ 4𝑎 + 2 whether 𝑏 is odd or even, we 
conclude that there are no integers a and b such that 𝑏G = 4𝑎 + 2. 🐾 

 
 
 
 
  



 21 

 

11. Proof that classmates collaborated on 
 

 
Group effort: Mark Brautigam, Regan Peri, Ericka Reyes, Jinbiao Tan 
 

Proposition:  
Let A, B, and C be subsets of some universal set U. Then, 𝐴 − (𝐵 ∩ 𝐶) = (𝐴 − 𝐵) ∪ (𝐴 − 𝐶). 

 
Ericka chose to present this proof to our group. Part A proceeded smoothly, but Ericka herself 
had some questions about Part B and we agreed that something was not quite right. After 
consulting with the instructor, all of us worked together to flesh out the various pieces of Part 
B. We were all pleased with the result. We were glad that our collaboration helped us 
understand these set concepts better. 
 

Proof. To show set equality, we first show that the left-hand side is a subset of the right-hand 
side. Then we show that the right-hand side is a subset of the left-hand side. 
 
A. ⊆	 We first show 𝐴 − (𝐵 ∩ 𝐶) ⊆ (𝐴 − 𝐵) ∪ (𝐴 − 𝐶). 
 

Let 𝑥 be an arbitrarily chosen element of 𝐴 − (𝐵 ∩ 𝐶). By definition of set difference, 𝑥 ∈ 𝐴 
but 𝑥 ∉ 𝐵 ∩ 𝐶. Since 𝑥 ∉ 𝐵 ∩ 𝐶, by definition of intersection, 𝑥 ∉ 𝐵 or 𝑥 ∉ 𝐶. 
 
If 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵, then 𝑥 ∈ 𝐴 − 𝐵. If 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐶, then 𝑥 ∈ 𝐴 − 𝐶. By definition of 
union, since 𝑥 ∈ 𝐴 − 𝐵 or 𝑥 ∈ 𝐴 − 𝐶, 𝑥 ∈ (𝐴 − 𝐵) ∪ (𝐴 − 𝐶). By definition of subset,  
𝐴 − (𝐵 ∩ 𝐶) ⊆ (𝐴 − 𝐵) ∪ (𝐴 − 𝐶).  
 
So, we have shown 𝐴 − (𝐵 ∩ 𝐶) ⊆ (𝐴 − 𝐵) ∪ (𝐴 − 𝐶). 
 
B. ⊇	 We will now show (𝐴 − 𝐵) ∪ (𝐴 − 𝐶) ⊆ 𝐴 − (𝐵 ∩ 𝐶). 
 

Let x be an arbitrarily chosen element of (𝐴 − 𝐵) ∪ (𝐴 − 𝐶). By definition of union, 𝑥 ∈ 𝐴–𝐵 
or 𝑥 ∈ 𝐴– 𝐶. By definition of set difference, 𝑥 ∈ 𝐴 but 𝑥 ∉ 𝐵. Similarly, 𝑥 ∈ 𝐴 but 𝑥 ∉ 𝐶.  
 
Either way, we know 𝑥 ∈ 𝐴. We also know that 𝑥 ∉ 𝐵 or 𝑥 ∉ 𝐶. By definition of intersection, 
either 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐶, or 𝑥 ∈ 𝐶 and 𝑥 ∉ 𝐵, or 𝑥 ∉ 𝐵 and 𝑥 ∉ 𝐶.  
 
By definition of intersection, if 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐶, then 𝑥 ∉ 𝐵 ∩ 𝐶. By definition of 
intersection, if 𝑥 ∈ 𝐶 and 𝑥 ∉ 𝐵, then 𝑥 ∉ 𝐵 ∩ 𝐶. Finally, if 𝑥 ∉ 𝐵 and 𝑥 ∉ 𝐶, then 𝑥 ∉ 𝐵 ∩ 𝐶. 
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Either way, 𝑥 ∉ 𝐵 ∩ 𝐶. Since we have already established that 𝑥 ∈ 𝐴, by definition of set 
difference, 𝑥 ∈ 𝐴 − (𝐵 ∩ 𝐶). By definition of subset, (𝐴 − 𝐵) ∪ (𝐴 − 𝐶) ⊆ 𝐴 − (𝐵 ∩ 𝐶). 
 
So, we have shown (𝐴 − 𝐵) ∪ (𝐴 − 𝐶) ⊆ 𝐴 − (𝐵 ∩ 𝐶). 
 
Conclusion. Since we have shown that 𝐴 − (𝐵 ∩ 𝐶) ⊆ (𝐴 − 𝐵) ∪ (𝐴 − 𝐶) and  
(𝐴 − 𝐵) ∪ (𝐴 − 𝐶) ⊆ 𝐴 − (𝐵 ∩ 𝐶), by definition of set equality, we conclude that  
𝐴 − (𝐵 ∩ 𝐶) = (𝐴 − 𝐵) ∪ (𝐴 − 𝐶). 🐾 
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12. A Proof that I feel proud of 
 

 
This is an example of an "if and only if" proof. There is another example of an "if and only if" 
proof at Proof 4 on page 8. With such a proof, we need to prove both directions. So the proof 
ends up being twice as long as a direct proof. In this particular proof, each direction is a direct 
proof, with nothing particularly special. 
 

Proposition. For	n	an integer,	n	is odd if and only if	n3 is odd.  
 
There wasn't any one proof that I was particularly proud of. I was proud to be able to draw up 
any of the proofs that were non-trivial. If I were to choose one, it would probably be Proof 11 
on the previous page, because I was proud of the collaboration with classmates.  
 
One reason I chose this proof here is that I may have a bit of a phobia about exponents higher 
than two. Factoring is harder, and polynomials get squiggly. I don't mind differentiating them 
because it reduces their degree. So I was proud to successfully address an exponent of 3. 
 

Proof. To show if and only if, we need to prove two propositions: ↔ 
[1] → If an integer	n	is odd, then	n3 is odd. 
[2] ← For an integer	n, if	n3 is odd, then	n	is odd. 

 
Part 1. → We will show that if	n	is an integer, and	n	is odd, then	n3 is odd. 
If	n	is odd, then there exists an integer k such that	n	= 2k + 1. By substitution and algebra, 
 

𝑛# = (2𝑘 + 1)# 
= 8𝑘# + 12𝑘G + 6𝑘 + 1 
= 2(4𝑘# + 6𝑘G + 3𝑘) + 1 
= 2𝑞 + 1 

 
for some integer 𝑞 = 4𝑘# + 6𝑘G + 3𝑘. We know q is an integer because the integers are 
closed under multiplication and addition. So, by definition,	n3 is an odd number. 
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Part 2. ← We will show that for an integer	n, if	n3 is odd, then	n	is odd. We will approach this 
statement by contradiction. That is, we will assume that	n3 is odd and	n	is even. By definition, 
if	n	is even, there exists an integer k such that	n	= 2k. By substitution and algebra, 
 

𝑛# = (2𝑘)# 
= 8𝑘# 
= 2(4𝑘#) 
= 2𝑞 

 
for some integer 𝑞 = 4𝑘#. We know q is an integer because the integers are closed under 
multiplication and addition. So, by definition,	n3 is an even integer. But this contradicts our 
assumption that	n3 is an odd integer. So, it is not possible that	n3 is odd and	n	is even. So, if	
n3 is odd, then	n	must be an odd integer. 
 
Conclusion. We have shown that if	n	is an odd integer, then	n3 is odd. We have also shown 
that if	n3 is odd, then	n	is an odd integer. So, we conclude that for an integer	n,	n	is odd if and 
only if	n3 is odd. 🐾 
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Final Reflection 
 
How I grew as a mathematician. I learned how to write proofs more rigorously than I’ve been 
used to. I’ve had to write proofs before, but they were more math-y (lots of equations) and less 
thought-y (text with explanations).  
 
We first learned the idea of proofs when we were in Geometry class in high school (freshman 
year). I really hated proofs because while I could visualize the answer (similar triangles, for 
example) I had a hard time putting into words the ideas I was seeing in my head. It seemed that 
others in my high school class had similar difficulties. In this present class, I have learned to 
hate proofs less and actually appreciate them. That is purely an emotional process, but I think it 
is an important step in the mathematical journey. 
 
Mentally, I resisted the group work because as a very introverted person, I’m uncomfortable in 
groups. But I think the group work helped me grow as a potential teacher because it gave me 
new insights into teaching techniques. (I teach computer science but there is the possibility of 
teaching math in the future or incorporating these group techniques into my computer science 
courses.) 
 
If we had time, it might have been good to have a brief review of all the topics at the end, 
spread out over two to three days, with a few topics each day. 
 
My perception from working in the groups is that contrapositive might have given other 
students some pause. Also, the discussion of functions and relations at the end seemed rushed. 
I wish we had one or two more days to discuss those topics in more detail, perhaps with more 
examples. There was a homework problem regarding function composition, and while this was 
in the textbook, I don't remember ever discussing it in class. (See Proof #8.) 
 
What I hope to remember and use from this class. I would hope that what I learned in this 
class would help me to succeed more in my future mathematics courses.  
 
I appreciate what we learned about proof by mathematical induction and the use of natural 
numbers and rational numbers. I am interested in number theory and I think those topics will 
come in handy in the future.  
 
I would want to remember the instructor’s use of group work and other techniques for helping 
students learn. I may be able to utilize some of these techniques in my own courses in the 
future. 🐾 
 
 


