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Gaussian Elimination 
 
Gaussian Elimination is a method for solving a system of linear equations. It starts with an augmented 
matrix that has the system coefficients on the left and the result vector on the right. It proceeds by a 
sequence of row operations to create an upper triangular matrix, which has zeros below the diagonal. 
The resulting matrix has what is called row echelon form.  
 
These row operations have the form of multiplying a row by a multiplier, then subtracting the result 
from another row in order to eliminate one of its coefficients. For example, consider the following 
matrix: 

1 2 –1 3 
2 1 –2 3 

–3 1 1 –6 
 
We could multiply row 1 by 2, then subtract the result from row 2. This results in the following matrix: 

 
1 2 –1 3 
0 –3 0 –3 

–3 1 1 –6 
 
You can see that we have eliminated the coefficient in the first column of row 2. We can do similar 
operations to eliminate all the entries below the diagonal. 
 
Then by another sequence of row operations called back substitution, we can transform the coefficient 
matrix to the identity matrix, which reveals the solution in the result vector. The row operations for back 
substitution use the same multiplication and subtraction operations as before. Back substitution starts 
with the upper triangular matrix that results from eliminating all the entries below the diagonal.  
 

1 2 –1 3 
0 –3 0 –3 
0 0 –2 –4 

 
Because the last row of the matrix has the solution for the last variable, we can use it to eliminate that 
variable from the other rows above. Then we can do the same with the next-to-last row, working 
upward. This is why it is called back substitution, because we start at the bottom of the matrix and work 
backwards toward the top.  
 
 
 
 



Partial Pivoting 
 
Sometimes the system of equations has zero coefficients. This can be problematic if those zeros occur 
on the diagonal, because it prevents the row operations for succeeding rows in the matrix. This can be 
fixed by swapping two rows, because in a linear system, it really doesn’t matter what order we look at 
the individual equations. This is called partial pivoting. We can just swap rows until the zeros get moved 
off the diagonal. When coding, we swap the row that has a zero on the diagonal with a row that has the 
highest coefficient (absolute value) in that column. This gives us consistency, efficiency, and stability, 
because higher coefficients keep the multipliers as small as possible, producing more accurate results in 
the row operations. Smaller numbers on the pivot points would require larger multipliers, which can 
swamp the other rows, so we try to avoid that. Choosing to put the higher numbers on the pivot points 
gives us smaller multipliers, which will have less probability of swamping the other rows. 
 
 

LU Decomposition 
 
LU Decomposition is a method for solving a system of linear equations by resolving the coefficient 
matrix A into a product of a lower triangular matrix (L) and an upper triangular matrix (U). Then  

𝐴 = 𝐿𝑈 

We don’t actually invert the original matrix A as a part of this process, but it is a requirement that the 
original matrix A be invertible. To perform LU Decomposition, we start by creating the U matrix from the 
A matrix using Gaussian Elimination as described above. In addition, we’ll create the L matrix by starting 
with the identity matrix. The identity matrix has ones on the diagonal and zeros everywhere else.  
 

 1 0 0 
I =  0 1 0 

 0 0 1 
 

At each step in the LU Decomposition process, we store the multipliers in the corresponding entries of 
the L matrix. In the previous example, where we multiplied row 1 by 2 then subtracted the result from 
row 2, we would store the multiplier 2 into the first column of row 2 of the L matrix.  
 

 1 0 0 
L = 2 1 0 

 0 0 1 
 

After we've completed these operations, we'll have an L and a U matrix, but we still won't have the 
solution. We derive the solution as follows. These matrix operations can represent the original system of 
equations: 

𝐴𝑥 = 𝑏 

Since 𝐴 = 𝐿𝑈,	we now have                𝐿𝑈𝑥 = 𝑏 
 

We now define 𝑐 = 𝑈𝑥, so we can solve the simpler equation 

𝐿𝑐 = 𝑏 



Since we know 𝐿 and 𝑏, we can solve for 𝑐 using back substitution. For example, we might have matrices 
that look like this: 
 

1 0 0  c1  2 
2 1 0 x c2 = 3 

–3 –2 1  c3  –6 
 

Which we can easily solve:    𝑐! = 2. 
2𝑐! + 𝑐" = 3 so 𝑐" = −1 

−3𝑐! − 2𝑐" + 𝑐# = −6 so −6 + 2 + 𝑐# = −6 so 𝑐# = −2 
 

We still have to solve for 𝑥. We do so by solving the matrix equation 

𝑈𝑥 = 𝑐 

We already know 𝑈 and 𝑐, so it just remains to calculate 𝑥 by a similar process to how we calculated 𝑐.  
 
 

LU Decomposition with Partial Pivoting 
 
Just as with Gaussian Elimination, sometimes with LU Decomposition, we may find zeros on the diagonal 
that make further progress impossible. In those cases, we can again use partial pivoting to move the 
zero diagonal entries to another row where they won't be on the diagonal. When doing LU 
Decomposition with Partial Pivoting, we will add a new matrix called the Permutation Matrix (P). The 
Permutation Matrix just keeps track of which rows we have switched. This is important because at the 
end of the process, we'll need to switch the corresponding entries in the results matrix (𝑏) also. The 
Permutation Matrix starts as an Identity Matrix, with ones one the diagonal and zeros off diagonal. 
Switching the rows just moves the ones to another row, so we still have a matrix with just ones and 
zeros, and these tell us which rows we have switch. For example, we might start with an identity matrix: 
 

 1 0 0 
P =  0 1 0 

 0 0 1 
 
If the Partial Pivoting process requires that we exchange the first and second rows, the resulting 
permutation matrix will look like this: 
 

 0 1 0 
P =  1 0 0 

 0 0 1 
 
To perform LU Decomposition with Partial Pivoting, we will be using the following equation: 
 

𝑃𝐴 = 𝐿𝑈 
 
 



Where  
• P is the permutation matrix, which starts as the identity matrix, 
• A is the coefficient matrix of the system we are solving, 
• L is the lower triangular matrix, which starts as the identity matrix, and 
• U is the upper triangular matrix, which starts the same as A. 

We can see that, at the beginning, 𝑃 = 𝐿 = 𝐼, and 𝐴 = 𝑈; therefore the equation is satisfied at the start. 
When we switch two rows in the permutation matrix, this is a reminder to switch those terms in the 𝑏 
matrix later. That is the purpose of the permutation matrix: it reminds us which rows we've switched. 
This is because the LU decomposition and the back substitution may occur at different times.  
 
The sequence of operations looks like the following:  
 
Start by checking the need for partial pivoting. We start with row 1, column 1. If that entry is not the 
largest (absolute value) in column 1, in matrix U, we exchange the first row with whichever row has the 
highest value in column 1. Then we perform the exact same row exchange operation on matrix P.  
 
After this operation, we will perform a multiply-and-subtract operation on the U matrix to eliminate one 
of the entries below the diagonal. The first time, we will aim to achieve a zero in row 2, column 1. Future 
operations will aim to put a zero in other spots below the diagonal. This step is the same as what we did 
in Gaussian Elimination. But in LU Decomposition, we have the additional step of storing the multiplier 
in its appropriate spot in the L matrix.  
 
Once we have our 𝑃, 𝐿, and 𝑈 matrices, and the original 𝐴 coefficient matrix and 𝑏 vector, we can 
proceed to find x through a sequence of back substitutions similar to latter parts of both Gaussian 
Elimination and LU Decomposition, with an additional step. We want to solve the system of equations 
𝐴𝑥 = 𝑏, but what we have is 𝑃𝐴 = 𝐿𝑈. Multiply both sides of 𝐴𝑥 = 𝑏 by 𝑃	to obtain: 
 

𝑃𝐴𝑥 = 𝑃𝑏 
 
Since LU = PA, we have               𝐿𝑈𝑥 = 𝑃𝑏 
 
Define vectors 𝑑 = 𝑃𝑏 and 𝑐 = 𝑈𝑥, to find  𝐿𝑐 = 𝑑 
 
Since we know 𝐿 and 𝑏, we solve for 𝑐 using back substitution. 
 
Then we solve the equation   𝑈𝑥 = 𝑐 
 
Since we know 𝑈 and 𝑐, this lets us solve for 𝑥, again by back substitution. These operations are made 
very easy because 𝐿	and 𝑈 are lower and upper triangular matrices that have enough zeros off diagonal 
to make easy solutions. 
 
 
 
 



Gaussian Elimination vs LU Decomposition 
 
LU Decomposition can be more efficient than Gaussian Elimination in the case where we have several 
similar systems of equations such that the coefficients are the same but the output vectors are different. 
That is, we may be solving several different systems of the form 𝐴𝑥 = 𝑏 with the same 𝐴 but different 𝑏. 
 
This article explains the rationale: 
https://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf 
Numerical Methods course at University of Cambridge, SY 2013–2014, Dr. David Greaves. 
 
If we were to attempt to solve these several systems by Gaussian Elimination, we'd have to start from 
scratch each time. Part of the reason is because both the 𝐴	and 𝑏 vectors are destroyed in the process of 
Gaussian Elimination. (Although I think this is a bit of a red herring because it is certainly possible to 
store away the matrix and vector immutably for safekeeping before doing the matrix operations on 
mutable copies.)  
 
More pertinent is that the row operations would be the same on matrix 𝐴	no matter what vector 𝑏 is, so 
we'd certainly be duplicating a lot of effort. In a sense, LU Decomposition is an attempt to separate the 
operations on matrix 𝐴	from the corresponding operations on vector 𝑏. We do this by saving a record of 
the operations we performed on matrix 𝐴, so that we can perform the same operations on vector 𝑏 
later. This lets us resolve matrix 𝐴 just one time, after which we can perform the recorded operations on 
any number of vectors 𝑏 we like, even at a later time. 
 
LU Decomposition appears to have a few more steps, as the algorithm is longer. But, according to the 
textbook, even if we're solving only one equation, the number of computations necessary for LU 
Decomposition is no more than for Gaussian Elimination. So there seems to be no reason to favor 
Gaussian Elimination when LU Decomposition is more efficient when solving multiple equations and no 
worse when solving only one.  
 
(Textbook, pages 86–87, Section 2.2.3, Complexity of the LU Factorization.) 
 

Partial Pivoting or not? 
 
Partial pivoting may be required to solve certain systems of equations. If there are zeros on any of the 
pivot points (the diagonal), partial pivoting is absolutely necessary to find a solution to the system. It 
might be possible to look at the matrix, and if no zeros are found on the diagonal, just solve without 
partial pivoting. But it might be possible that the multiply-and-subtract operations could create 
unintended zeros later that weren't apparent at the start. This would cause the process to fail. So it's 
better just to use partial pivoting in all cases. 
 
The following page describes the problems with zeros on the diagonal, and very small numbers that 
might approximate division by zero when performing the matrix operations. 
 

https://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf


https://lemesurierb.people.charleston.edu/introduction-to-numerical-methods-and-analysis-
julia/docs/linear-equations-2-pivoting.html 
(College of Charleston, Introduction to Numerical Methods, Brenton LeMesurier, 2020–2021.) 
 
This page from MIT describes the partial pivoting process and rationale: 
https://web.mit.edu/10.001/Web/Course_Notes/GaussElimPivoting.html 
(MIT, Terry D. Johnson, Fall 2000) 
 
Part of the rationale is that by putting the largest absolute value at the pivot point, which determines 
the multiplier, we avoid round-off errors that might accrue from math operations on smaller numbers. 
When multiplying a very small number by a very large number to eliminate a number to get a 
subtraction term, the large multiplier may swamp the other numbers in that row and exceed the 
precision of the machine. This is described in the textbook. (Page 95, section 2.3.2, Swamping.) It is also 
described in other textbooks, such as  
 
https://ece.uwaterloo.ca/~dwharder/nm/Lecture_materials/pdfs/3.3%20Linear%20algebra.pdf 
(University of Waterloo, ECE 204, Numerical Methods, Douglas Wilhelm Harder, Winter 2025.)  
 
Partial pivoting does require more operations, and in the case of LU Decomposition, additional memory 
to store the 𝑃 matrix. But since the operation may fail without it, we consider it not optional.  
 
 

https://lemesurierb.people.charleston.edu/introduction-to-numerical-methods-and-analysis-julia/docs/linear-equations-2-pivoting.html
https://lemesurierb.people.charleston.edu/introduction-to-numerical-methods-and-analysis-julia/docs/linear-equations-2-pivoting.html
https://web.mit.edu/10.001/Web/Course_Notes/GaussElimPivoting.html

