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Abstract 
 
Mathematicians have long had an interest in describing music in mathematical terms. Pythagoras (500 
BC), Euclid (300 BC), and Euler (1739) all made important contributions to music theory. We look at 
various ways to visualize music using geometry. We can visualize the relationship between tones as a 
linear keyboard, a never-ending circle, or a spiral in two or three dimensions. Scales are constructed 
using geometric series of frequencies, starting with the perfect fifth interval. These scales can be 
visualized as waveforms or spirals in two or three dimensions. We compare and contrast ancient and 
medieval tuning systems versus modern tuning systems, and applications of each. Major and minor 
chords have their own frequency relationships that sometimes conflict with the perfect fifth. Chords can 
be visualized using a tiling or mesh; these meshes can be adapted to portray different kinds of tunings. 
We look at advantages and disadvantages of each kind of geometry for visualizing music. 
 
Introduction 
 
The various aspects of relationship between mathematics and music are well known, having been 
recognized since the days of Pythagoras (500 BC) and Euclid (300 BC). Mathematics can be used to 
describe tones, scales, harmonic intervals, chords and chord progressions, time sequences, and rhythm. 
Mathematics was used extensively over a period of 500 years to develop the tuning systems of today. 
Mathematics is also used to construct modern electronic music instruments, which use combinations of 
hardware (chips) and software (programming such as frequency analysis) to generate tones (Benson, 
2006).  
 
Mathematics is used in music composition in many ways. Various programs allow one to put notes on a 
music staff for later playback. Data formats and protocols such as MIDI allow one to encode and transfer 
music as files. These files can also be used to control electronic musical instruments. Composers can use 
computers to create aleatory (random) music or rule-based music (twelve-tone, serial, or tone row 
techniques) that formerly had to be computed by hand (Wright, 2009).  
 
Much of the mathematics we used to describe music is algebraic in nature. The relationships between 
frequencies and rhythms can generally be described as ratios. For example, 2:1 is the ratio of 
frequencies of tones one octave apart. 4:1 is the ratio of beats to measures in much of music. In this 
paper, we will look specifically at applications of geometry to visualizing music. So while the algebra still 
remains, we will see (literally) how these relationships develop. 
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1. Tones 
 
Let's start with some terminology. In the following discussion, we usually use the term key to indicate a 
physical key on the piano keyboard. Key has other meanings, such as a piece of music being in the key of 
C major or the key of E-flat. But we won't be using the term that way much. The term note refers to a 
name we give to a musical pitch. We frequently talk about notes on a musical score or staff. Sometimes 
key and note are used almost interchangeably. For example, Middle C is both a specific key near the 
middle of the piano keyboard, and also a particular placement of an object on a musical staff.  
 

 
Figure 1: Notes on the musical staff 

The term tone refers to the sound made when a musical note is actually played. We describe tones in 
terms of their frequency, amplitude, and timbre. Keys and notes are intrinsically visual, because we can 
see keys on the piano and we can see notes on the staff. On the other hand tones are primarily auditory. 
Our goal here is to describe these auditory phenomena in a more visual way. 
 
One common way to visualize tones is in terms of a piano keyboard. The relationship between tones 
looks linear, even though the frequencies themselves are not linear. This visualization allows us to see all 
the notes in the scale. We don't need to look at the whole piano keyboard. The piano keys repeat in a 
pattern called octaves. The word octave indicates that there are eight keys. Each octave looks the same 
as the next and the previous. But some octaves (more to the left of the piano keyboard) have lower 
tones, and some (more to the right) have higher tones. So we have a natural relationship between lower 
tones (leftward) and higher tones (rightward). 
 

 
Figure 2: Portion of piano keyboard 

 
Figure 2 shows a portion of a piano keyboard. There are eight keys, from C up to the next C. The first C 
(on the left) could be any C on the piano keyboard, but maybe we can assume the first C is Middle C. 
Then the A would have a frequency of 440 Hertz. You've probably heard of A 440. If you play all the 
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notes from C up to the next C, you've played the C major scale. Once you've got to the C on the right 
hand edge, there are usually more piano keys (unless you got to the very end of the piano keyboard). So 
you could keep playing another octave. For this reason, this static keyboard may not be the best way to 
visualize 88 tones from the 88 keys on a piano keyboard.  
 
Figure 3 shows a circle that has all the notes from C up to C. 
Moving clockwise around the circle is equivalent to moving to 
the right up the piano keyboard (Wright, 2009). We can start 
on C and play all the notes up to B, then we can keep going. 
The circle theoretically goes around infinitely, but for a 
practical reason, we limit the number of octaves. This is not 
because of any limitation of acoustic or electronic musical 
instruments, but because of a limitation of human hearing. 
The generally accepted limits of human hearing are around 20 
Hz to 20,000 Hz (Benson, 2006). This represents a distance of 
about 10 octaves or 120 notes. The piano keyboard has 88 of 
these notes. The lowest key on the piano keyboard has a 
frequency of about 21 Hz, and the highest note has a 
frequency of about 4200 Hz (Benson, 2006).  
 
You may have noticed a few anomalies in the foregoing discussion. We said there are eight keys in the 
octave, which accounts for its name. But the keyboard illustrated in Figure 2 actually has more keys. The 
eight keys only account for what we call the white keys. But there are some additional black keys in 
between the white ones. Also, we said that the 10 octave range 
of human hearing consists of about 120 notes. So really, there 
are 12 notes in an octave, not just eight. The black keys have 
names like B-flat (B♭) and F-sharp (F♯). Here is what all 12 notes 
look like in a circle. 
 
The circle in Figure 4 shows that we can play not only the white 
keys, but also the black keys, and they all continue around 
clockwise (higher) or counterclockwise (lower). A scale that uses 
only white keys is called a diatonic scale. Some scales use only 
one black key or only a few black keys. For example, the F major 
scale uses the B♭ black key, and the G major scale uses the F♯ 
black key. A scale that uses all the black and white keys is called 
a chromatic scale.  
 
We might be able to visualize more than just one octave by arranging the keys in a spiral. We could put 
lower notes on the inner part of the spiral and higher notes on the outer part. To have more than one 

Figure 3: 7 tones in a circle 

Figure 4: 12 tones in a circle 
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octave in one chart, we probably want a way to distinguish one octave from another. One way musicians 
do this is to give each key an octave number as well as a letter (Wright, 2009). For example, C4 is middle 
C. A4 is A 440 because it is in the same octave with middle C. The C below middle C is C3. The C above 
middle C is C5. The highest note on the piano is C8. The lowest note on the piano is A0. Figure 5 shows 
the piano keyboard with octave numbers. 
 

 
Figure 5: Piano keyboard with C4 and A4 highlighted 

 
Figure 6 shows the octaves arranged in a spiral instead of a 
linear keyboard. Note that in the spiral, all the C notes occupy 
the same angle around the spiral. All the D notes occupy the 
same angle. This shows that we can divide the tones into tone 
classes, note classes, or pitch classes (Benson, 2006, Wright, 
2009). All C notes are in the same tone class. All D notes are in 
the same tone class. And so on. The position of each tone 
relative to the center of the spiral indicates its frequency. Tones 
farther away from the center have higher frequency and sound 
higher. This concept of tone classes is like the congruence 
classes you might encounter in number theory or abstract 
algebra (Benson, 2006) or the equivalence classes you might 
encounter in set theory (Wright, 2009). 
 
It might be more instructive to view this in 3D. In Figure 7, the tones spiral around the ! axis and tones 
with higher ! values have higher frequencies. Tones in the same tone class have the same colors. 
Shepard (1982) calls this spiral a helix with a chroma dimension that goes around the ! axis (indicating 
the different tone classes), and a height dimension that goes up the ! axis (indicating the octaves). (See 
Figure 8.) 

Figure 6: 21 tones in a spiral  
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Figure 7: Tones in a 3D spiral     Figure 8: Chroma helix (Shepard, 1982) 

 
The green balls in the front of the drawing could be C tones. Then the purple ones to the right would be 
C♯, the gray ones D, and the red ones E♭. Tones in the same tone class appear one above another.1 All 
tones are equally distant from the ! axis, but their ! coordinates indicate relative frequencies. In this 
drawing, each tone rises above the previous and is below the next tone, indicating a change of 
frequency.  
 
2. Pitches and Scales 
 
Tones that are one octave apart have frequencies in a 2:1 ratio. For example, the A above A 440 has a 
frequency of 880 Hz. The A below A 440 has a frequency of 220 Hz. Musicians and mathematicians have 
recognized this for centuries. A string that is one foot long, when bowed or plucked, has a sound that is 
higher than a string that is two feet long, but otherwise sounds the same. We describe tones in the same 
tone class as all sounding somewhat the same, even if they are an octave apart. That is how we 
recognize an octave. The same applies to lengths of pipe when air is supplied and pieces of metal when 
struck with a hammer.  
 
Musicians recognize tones that are an octave apart as being harmonious; they sound good together. 
Sometimes, two tones an octave apart might actually sound like just one tone. That is how well they go 
together.  
 
 
 
 
1 Unfortunately, there is some duplication of colors in Figure 7. This is due to a limitation of the drawing program, 
Desmos. It would be better if each tone class had its own distinct color. 
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Pythagoras discovered that tones whose frequencies are the ratios of small integers sound harmonious 
(Benson, 2006). The smaller and closer the integers are, the more harmonious the sound. Two tones 
whose frequency ratio is 2:1 are an octave apart. After the octave, the next most pleasing combination 
has a frequency ratio of 3:2 (Himpel, 2022). These tones form what is called a perfect fifth. In music, a 
perfect fifth is not a fraction, although the name suggests that. Instead, a fifth is a pair of tones that are 
five keys apart on the keyboard. For example, C and G form a perfect fifth. The five keys are C–D–E–F–G. 
The perfect fifth is foundational in both western and eastern music, and in all musical styles, such as 
classical, jazz, and pop (Benson, 2006).  
 
One reason why tones with a frequency 
ratio of 3:2 sound good together is 
because their waveforms line up. Figure 9 
is an example of how the waveforms might 
look. You can see how both waveforms 
start in the same place and end in the 
same place. The black one is two complete 
cycles long; the red one is three complete 
cycles long (Wright, 2009). Thus the 3:2 frequency ratio.  
 
Since these waveforms line up, maybe we can use their 
frequencies to make the most melodious scale possible. This is 
what Pythagoras tried to do. Suppose we start with A2 = 110 Hz. 
Then we can make a perfect fifth by having the next above E tone 
be 440 x 3/2 = 165. Then we could make another perfect fifth by 
having the next B tone above that be 660 x 3/2 = 247.5. We could 
continue doing this 12 times to determine all the frequencies of 
all the 12 tones.  
 
We can visualize this process as a spiral, similar to the spiral we 
saw earlier, but instead of using adjacent keys on the piano 
keyboard, using fifths (Benson, 2006). Figure 10 shows such a 
spiral in a two-dimensional space. 
 
In the end, we would have a set of frequencies that looks like this: 
 

 A 110  C♯ 556.875  F 2819.179688 
 E 165  G♯ 835.3125  C 4228.769531 
 B 247.5  D♯ 1252.96875  G 6343.154297 
 F♯ 371.25  A♯ 1879.453125  D 9514.731445 
       A 14272.09717 

Figure 9: waveforms with 3:2 ratio. Black: " = $%&2(; Red: " = $%& 3(. 

Figure 10: A spiral of fifths 
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Note that the first A is 110, and the last A is 14272.09717. These A tones are 7 octaves apart. Since an 
octave has a frequency ratio of 2:1, we would expect that last A to have a frequency of 
110 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 or 110 × 27 = 14080. So there is a little discrepancy at the end. 
The discrepancy, expressed as a ratio, is 14272.09717 / 14080 = 1.0136432649. This ratio is called the 
Pythagorean Comma and is the error created when trying to tune a piano this way (Wright, 2009). It is 
not possible to resolve this discrepancy because (3/2)12 and 27 have no factors in common. The history 
of tuning revolves around this fundamental problem and finding ways to resolve it. The spiral is one way 
to visualize this problem. 
 
Figure 11 shows these Pythagorean fifths in a spiral, 
similar to the spiral we saw previously for scales. In this 
case, the adjacent balls represent fifths, not adjacent 
keys on the piano. As we move higher on the spiral, we 
increment by fifths. But after we've moved around 12 
fifths, the ball does not quite line up with the ball above 
it. This represents the 1.0136 discrepancy.  
 
Equal-tempered tuning, developed in the 1700s, is the 
modern solution to this problem (Benson, 2006). The 
mathematical strategy is simple. We start with the 
premise that a 2:1 frequency ratio is an octave. There is 
a 2:1 frequency ratio between A3 and A4, and a 2:1 ratio between A4 and A5. If A4 is 440 Hz, then A3 is 
220 Hz, and A5 is 880 Hz. The relationship is geometric, not linear. So we get the next frequency in the 
series by multiplying by a fixed number. In the case of an octave, that number is two. For adjacent notes 
in the scale, since there are 12 notes in an octave, we'd need to multiply 12 times by a fixed number to 
arrive at 2. So that fixed number would be √2/0 ≈ 1.05946 (DuBose-Schmidt, 2022). Each tone has a 
frequency that is √2/0  times the frequency of the next lower tone. 
 
Since this does not result in small integer ratios for the various intervals, the waveforms do not "line up" 
the way we saw in Figure 9 with the 3:2 waveforms. For example, the ratio of a perfect fifth becomes 
1.4983, which is pretty close to 1.5. This is close enough for most practical purposes when performing 
music. But some composers use special scales, instruments, and performance styles that are capable of 
preserving the small integer ratios, and they can sound different. 
 
  

Figure 11: Pythagorean fifths in a spiral 



Mark Brautigam Visualizing Music Using Geometry  8 

3. Chords 
 
When we talk about chords, we are usually talking about triads. A triad is three tones played at the same 
time. The most common chords are the major triad and the minor triad. Both triads have the root of the 
chord and the perfect fifth. The root is the basis of the chord. For example, in the key of C, the root of 
the chord would be the note C. We can then add the perfect fifth, which is G. In between, there will be 
another tone.  
 
If the chord is a C major chord, the additional tone will be E, which is a major third above the root, C. 
Like the perfect fifth, the third is not a fraction, but takes its name because the notes are three white 
keys apart. Looking at the piano keyboard again, the E key is four keys above the C key, if we count all 
the white and black keys. C–C♯–D–D♯–E. The major third interval is always four keys distance.  

 
Figure 12: Major Chord, C–E–G 

 
To make a minor chord, the additional tone will be a minor third above the root note. A minor third is a 
distance of three keys. In the case of the C chord, the minor third will be the E♭ key, which is a distance 
of three keys above the C key.  
 

 
Figure 13: Minor Chord, C–E♭–G 
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The C major chord consists of a major third interval (C to E) and a minor third interval (E to G). The C 
minor chord consists of a minor third interval (C to E♭) and a major third interval (E♭ to G). Both chords 
have the same intervals, major third and minor third, but in a different order. The quality and mood of 
the two chords is different. Many people think the major chords invoke a happier mood and the minor 
chords a more melancholy mood (Loveday 2022).  
 
Chords can have more than three tones, but usually we think of such chords as being variations on the 
three-tone chords. An example is the seventh chord used in all kinds of western music, but especially in 
jazz music. A seventh chord might consist of the tones C–E–G–B♭ or G–B–D–F. Note the addition of the 
fourth tone to the major triad. In each case, the additional tone is seven white keys above the root. 
 
Euler (1739) posited placing pitch classes in equilateral triangles in the plane. From any pitch, movement 
to the right goes up in fifths, movement up and to the right goes up in major thirds, and movement 
down and to the right goes up in minor thirds. The layout is called a Tonnetz (tone net).  
 

 
Figure 14: Euler Tonnetz (Rietsch, 2024)  

 
In this mesh, triangles pointing upward are major triads, and triangles pointing downward are minor 
triads. Note that the left edge of the yellow shaded portion has the same pitch classes as the right edge. 
This allows us to extend the geometry indefinitely or even wrap it around, forming a torus (Rietsch, 
2024). The top and bottom edges, while their tones are enharmonic (different symbols for the same 
tone), may not perfectly align, depending on the particular method of tuning being used. In the modern 
equal-tempered tuning system, G♭ and F♯ are the same note, as are D♭ and C♯, and so on. But in 
other systems of tuning, such as Pythagorean or Just Intonation, these tones may not be the same. 
 
Eitz utilized Euler's triangular array to notate different options of just intonation (Benson, 2006). Eitz 
added numbers to indicate the correction in commas from the idealized Pythagorean tuning. Figures 15 
and 16 show Eitz's notation. 
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Figure 15: Eitz notation for major triad (left) and minor triad (right). (Benson, 2006) 

 
A major triad is a triangle pointing up. E–1 in the major triad signifies that the third (E) is being adjusted 
down by one comma (a factor of 81/80 in frequency).  
 
A minor triad is a triangle pointing down. E♭+1 signifies that the minor third (E♭) is being adjusted 
upward by one comma in frequency. This notation allows us to succinctly notate an entire Just tuning. 
An example is Kepler's tuning (Benson, 2006): 
 

 
Figure 16: Kepler's just tuning using Eitz notation. (Benson, 2006) 

 
When we draw the entire scale, it resembles Euler's Tonnetz.  
 
Rietsch (2024) suggests other triangular and polygonal meshes that provide more uses, for example, 
describing chords with four or more tones, such as the seventh. 
 
 
Conclusion 
 
We have looked at various ways to visualize music. We can view tones as keys on a keyboard or a circle 
of tone classes or a spiral of frequencies. We can view scales as waveforms or as spirals. We have seen 
how the notes of the scale form a geometric series of frequencies. We have seen how chords can be 
viewed as a mesh or grid that shows the relationships between minor thirds, major thirds, and perfect 
fifths. 
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There are many other ways to visualize music using geometry. 
The Euler Tonnetz can be bent and folded in various ways to 
create an infinite continuous strip or even a torus (Shepard, 
1982). These attempts aim to harmonize the physical attributes 
of frequency and timbre with their psychological perception.  
 
The (Hugo) Riemann Wreath (Figure 18) shows possibilities of 
chord progressions (changes of harmony over time) (Morris, 
1998). The wreath is useful for modern and jazz composers who 
are attempting to create new musical progressions. 
 
There are ways of visualizing rhythm using marks on circles (similar to our tone circles and spirals) to 
indicate beats within a measure (Demaine, 2009). These geometric constructs enable researchers to 
understand world music and perhaps explore common origins among different musical cultures (Figure 
19). 
 

  
Figure 18: Riemann Wreath (Morris, 1998) Figure 19: Bossa nova rhythm (Demaine, 2009) 

 
 
  

Figure 17: Torus (Shepard, 1982) 
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